Invertibility for spectral triangles

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Invertibility Results for Lindemann, Borel Triangles

Let Z ∼= e be arbitrary. Recently, there has been much interest in the characterization of sets. We show that |W̃ | ≥ i. In [15], the authors characterized lines. A central problem in homological Galois theory is the description of categories.

متن کامل

Spectral Sparsification and Restricted Invertibility

Spectral Sparsification and Restricted Invertibility Nikhil Srivastava 2010 In this thesis we prove the following two basic statements in linear algebra. Let B be an arbitrary n×m matrix where m ≥ n and suppose 0 < ε < 1 is given. 1. Spectral Sparsification. There is a nonnegative diagonal matrix Sm×m with at most dn/ε2e nonzero entries for which (1− ε)2BBT BSBT (1 + ε)2BBT . Thus the spectral ...

متن کامل

A New Spectral Method on Triangles

We propose in this note a spectral method on triangles based on a new rectangle-to-triangle mapping, which leads to more reasonable grid distributions and efficient implementations than the usual approaches based on the collapsed transform. We present the detailed implementation for spectral approximations on a triangle and discuss the extension to spectral-element methods and three dimensions.

متن کامل

Linear Maps Preserving Invertibility or Spectral Radius on Some $C^{*}$-algebras

Let $A$ be a unital $C^{*}$-algebra which has a faithful state. If $varphi:Arightarrow A$ is a unital linear map which is bijective and invertibility preserving or surjective and spectral radius preserving, then $varphi$ is a Jordan isomorphism. Also, we discuss other types of linear preserver maps on $A$.

متن کامل

On Multivariate Chebyshev Polynomials and Spectral Approximations on Triangles

In this paper we describe the use of multivariate Chebyshev polynomials in computing spectral derivations and Clenshaw–Curtis type quadratures. The multivariate Chebyshev polynomials give a spectrally accurate approximation of smooth multivariate functions. In particular we investigate polynomials derived from the A2 root system. We provide analytic formulas for the gradient and integral of A2 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Operators and Matrices

سال: 2007

ISSN: 1846-3886

DOI: 10.7153/oam-01-26